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AN ITERATIVE METHOD OF SOLVING THE PROBLEM
OF INTERACTION BETWEEN ELASTIC BODIES™

A.I. ALEKSANDROV, V.G. BOBORYKIN and YU.A. MEL'NIKOV

A finite-dimensional analogue of the static three-dimensional contact
problem for two elastic bodies is studied. The interacting bodies are
approximated by half-spaces, taking Coulomb friction into account. It is
assumed that the normal ealstic displacements are independent of the
tangential stresses and that the boundary separating the slippage zones
from the adhesion zones within the area of contact is reduced to a system
of non-linear equations. An iterative process is proposed for solving
this system. The convergence of the iterative sequence to a unique limit
point independent of the initial approximation, is shown.

Let us consider the static, three-dimensional problem of contact between two elastic
bodies, taking Coulomb friction into account, with partial slippage and adhesion taking place
within the area of contact /l1/. We shall approximate the bodies in contact by half-spaces.
In a number of important practical cases a decomposition of the initial problem is possible
such that the area of contact and the normal stresses can be found independently of the
determination of tangential stresses and relative displacements /2, 3/. The classical formula-
tion of the second of these problems /1/ will be given as follows. Assuming that the function
y (¢, m) of normal stresses is known, it is required to find, within the area of contact, a
vector function of tangential stresses x(, 1) and a vector function of the relative displacements
V (&, 1) satisfying the conditions

IxI<plyl, V$0—-x=—p|yi|V [V
Here V=B (x)+ F, B(x) is a linear integral operator with a weak singularity /2, 3/, F=
F(¢,n) is the rigid, tangential relative displacement of the bodies and p is the coefficient

of friction. We shall call the.following system of relations the finite-dimensional problem
of determining the tangential stresses and relative displacements (problem A):

Ix|<<ulwl, |Vil=0, i, Ch (1)
[ Vil >0, xi=—ply| |VilVi, i€l Cl, 2
Here
X = @gigy Za)y Vo= Vi Vo LU Li=To=(1,..., N}, 1 NL:=1;
2N
V= b+ Fy k=1,...,2N
=1

and the matrix [b;| is symmetrical and positive definite /2, 3/.

In accordance with the meaning of the problem, y <0 is the normal stress at the i-th
point on the surface of one of the bodies in contact, x;, Vi, F; = (Fy;_,, Fsi) are the vectors of tan-
gential stress, the relative displacement of the surfaces of the bodies under load, and of the rigid
relative displacement of the i-th point respectively, {bx;| is the matrix of the coefficients
of the effect of the j-th component of the tangential stress vector at the [(j+ 1)/2] -th point
on the k-th component of elastic tangential displacement vector at the point with number
[(k + 1)/2] , where ‘-] denotes the integral part of the number. The sets I; and I, consist
of the indices of the points situated within the adhesion and slippage zones respectively, and
must be determined when solving system (1), (2).

We shall assume that the problem of determining the normal stresses and the area of
contact has been solved, i.e. that the numbers y; i=1,..., N) are known. The formulation of
this problem (we shall call it problem B) and one of the methods for solving it were given
in /4/.

Let us turn our attention to problem A. Dividing the second relation of (1) and the first
relation of (2) by Bi= max (b, 4, by o} + |0y, 1>0 we obtain the system

I1%1<%s, (A |=0,iel, Cl 3)
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14,120, x; = — 5, | A, LA, ie fh ]y 4
2N

5= !"'Iyi I A; == (Agi—p Agd, Ak = E akaj.“‘fk
=1

Bgi 1, = bzi-ol,imi’ Lt bzi, jf 51’ 1 28-1,5 = F 2i-1, 5[ 5i

Py = Fu, /B i=1, .. Nk j=1,..,2N

Let us consider a system of non~-linear equations for the unknown vectors x;(i=1,..., N)
X; = (x; — Ay 9 (5)

5, Ix-Al<y

q~=q(lxi—A~!,2~)={ - \
N P X — A X — A >

Theorem 1. The system of Egs,(5) is equivalent, for thevectors x;{i=1,..., N}, to the
system of relations (3), (4).

proof. Let x;(i=1,..., N) satisfy system (5). For the values of i for which |z — Al <
z; , we have ¢;=1. Therefore |[A;|=20,]x]<2z., i.e. relations (3) hold. For the values of i
for which |x;—A;|>3z, we have x3= (x;~ Aj)zix;— A; L. This yields |[x;]=12, and the first
relation of (4) holds. If in addition =0, then |[x;}=0 and the second relation of (4)
holds. If on the other hand 2z >0, then A;= —ajx;, where g;=|x-—A;|{z71—1>0 and again
the second relation of (4) holds. We will show in the same manner that if x{i=1,...,N)
satisfies the relations (3), (4), then system (5) is also satisfied.

Let us carry out the following iterative process of solving system (5). Suppose, in the
n-th approximation,

P xm® | <o m=14, .., N (6)
We compute the components of the vector A;» and the guantity g™

2N N
ny _ n n
Al = 2 iy, 75 Flgigy Bpi= D) Ba1,5%5F1 4 M
=1 =1

R L ®
t 3B R > R =x" A"

=pn-+1—rN, r— is an integexr such that 1gigw 1))
We assume that
0l —x 18" {10
where the vectors §," = (b, ,, 6;,) are defined as follows:
8y =0 when m=ki (11)
an = - xm" -+ (xmn— A" qm” when .

{the value of the index I is connected with the relation (9) by the number of the approximation
n).
We shall show that |¥j'|<am For m=i this is obvious. Let m=i If |x/—A"|<xy,

then x{*™ = x" — A%, therefore [xM*!|{<s. If [x®—A®|>zs then x™ = (%" — A?) z | %" — AL,

]
and hence |x}''|=g;. This implies that in order for inequality (6) to hold, it is only
necessary to assume, in the zeroth approximation, that x| <zm m=1,..., N,

Theorem 2. A unique solution of system (5) exists, which can be obtained as a limit of
the sequence constructed according to the rule given by (7)—{(11).

Proof, Let us consider the functional

2N 2N

2N 2N
LR =1y = Do - X0 (D bk;‘”j+pk) =3 2 byj (2 — Xy) (z;— X )
k=1 i=1 k=1 j=1
where X = (X;,..., X,y) is a solution of the system of equations
' N
Zbkizj+1"k=0, k=1,.,. 2N {12)
=1
Since the matrix |#;| is positive definite, Il(z, ..., zy) >0 and a sclution of system

(12) exists and is unique.
The functional introduced is the same as that discussed in /4/. Carrying out trans-
formations similar to those in /4/, we obtain

FOM) — 1) = 28, (80 A, H O + (13)
bzi—l.zi-l ('!’gli«l)2 + 2b2i—1.2i :;i—lagi + bzi,zi (b;s)’

1t can be shown that
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fl

(03i-1)% -+ (3 + 85s_, Afi, + 354N <O
Indeed,

pl= xS = ARG - D — I X - A cos 9 Mg~ 1) (14)
" is the angle between the vectors xi® and (x® — AM).
If |x™— A™f<3, then ¢®=1 and we have p"=¢. Let |x"— A"{> 1. Remembering that
at every iteration step |x*|<z, we shall write

n n
Ix; fcos g EA n

oA STy —ar

and this shows that the right-hand side of Eq.{14) is non-positive, which it was required to
prove.
Returning to relation (13), we write the estimate
™) — 1M < — C |6 2
C= mmﬂ>0 [ =(0..., 2:»1'6";““"0)

Since 8% = x™1 .. x», therefore l(x"”)\ ™ — ¢ x™ —xn p, It can be shown that the
following relation holds for any integral value of ¢3>0:

o™ — X" pIC I ) — LM
therefore a limit X"|, =X = (2, ..., 5,y) €Xists, which will represent the solution of system
(5) .
The solution is unique. Indeed, let two solutions exist x*= (s}, mi*), L** = (shey, o) i =
i,...., N. Consider the relation
2N N
§=3 3 btz — 2N g — 5 ) =

k=1 j=1
2N 2N

N
M s
2 (2 byt 2 by )("’k‘“‘zh )= zlﬁisi
k=1 j=1 i=1
Here
- . T T R
S;= (A%«I Ay} ("'214 Zpig) H By 87 (g — Zp )y Byt = Y omt + fe
=1

=St hy b=t

i=1

The following combinations of the quantities g¢* = g (Ri*, z), ¢;** = ¢ (Ri**, 2)) are possible at
various values of the index I calculated from the second relation of (5):

Al qz =1 g*=1, q‘ —-ziR
q.* =1z, /Rl R q, =1 ¢* =zivai‘1 qi” =z, JR**
(R* = | x;* — A% |, BT =|x}"— A"

It can be shown that §;<0 for any of these combinations. But then we also have S0,
which is possible when the matrix |by;] is positive definite, only when x* = x** i=1,..., N
which proves Theorem 2.

The iterative process proposed here, just like the process discussed in /4/, is an
analogue of the Gauss relaxation method of solving systems of linear algebraic equations /5/.
The algorithm (7)—{11) ensures the convergence of the iterative sequence P n=0,14,...)
irrespective of the choice of the initial approximation, since after the first cycle of N
iterations conditions (6) hold.

As an example, we have solved the problem of contact between two cylinders with mutually
orthogonal generatrices, made of the same material and loaded by normal and shearing forces,
The rectangular region including the area of contact was covered by a 20 x 20 mesh, and the
stresses sought were calculated at the centre of each elementary cell. To solve problem B,
we used the process described in /4/: problem A was solved using algorithm (7)—(11). The
following inequality was satisfied after 25 cycles:

[ XN ynN 11 x(HON 11078
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NEUTRAL LOADING IN THE ENDOCHRONIC MODEL OF THE THEORY OF PLASTICITY”

A.B. MOSOLOV

The properties of a simple model of the endochronic theory of plasticity
(ETP) for inactive deformation processes are studied. The theory uses
"internal time" as the parameter of the deformation process, and .no
distinction is made between the loading and unloading which is essentially
non-linear /1-4/.

A loading and deformation processes are described in a five-dimensional stress deviator
space X3 /5/. Restricting ourselves to processes not depending explicitly on time, we can
write the defining equations of ETP for an initially isotropic material in the form

de = dep, -+ de,, de, = E-1d6, dep = ods, dz = F (0, ¢, €', &} di, )
df =|de — yEdo|, 0 1< 1

Here e, ep, ec are the total, plastic and elastic deformation vectors, respectively, ¢ is
the stress vector, z is the "internal time" parameter, E is the modulus of elasticity, F is
the O (5)-invariant hardending function, /4/, t is the modified measure of the deformation,
and y 1s a parameter characterizing the contribution of the elastic component of the deforma-
tion towards the variation in intrinsic time; for any a,a’ = da/ds, where ds=|de|is the length of
the arc of the deformation trajectory. We assume that the magnitude of the volumetric deformation e
does not affect the plasticity.

System (1) yields the following equation:

do = Ede — EFced {2)

In the simplest case F can be regarded as a constant of the material, in which case Eq.

(2) will take the form (g, =1/F is the yield point)
do = Ede — ag |de — yE-do |, a = Ele, {3

The above eguation describes a material without hardening. For a material with linear
isotropic hardening we must make the substitution o, 6,(1+ k&) /1/ (in the case of trans~
lational hardening ¢ —o¢ —pe, u 1is the hardening modulus).

The ETP has no concept of a yield surface and there is no unloading condition; therefore
Egs.(2), (3) are assumed to hold for both the loading (active processes ode>0) and unloading
(passive processes ode<<0 /6/).

Let us write the condition of inactivity of the process: ode <0 (the equality corresponds
to neutral loading). Substituting de into it from (2), we can rewrite this condition in the
form

o' + EFe,t’' <0, 0, = |0 (4)
Let y be the angle between ¢ and des,e=}¢'|. Then
oy =acosy {5)

Let us transform the expression for §. To do this, we substitute de from (2) into the
expression for F (1} and square the resulting expression. After cancelling like terms, we
obtain a quadratic eguation for §', whose root is

b 1t—y Po,cosy4 Y 1— Fio fsiniy s
=TTEa 1_},1;51‘, {6)

(the second root is rejected as extraneous). Substituting (6) into (4) we write, after
reduction, the condition of inactivity of the process when an extra load do is added to the
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