
PM1 V.S.S.R.,Vol.50,No.2,pp.246-249,1986 0021-8928/86 $lO.Oo+o.oo 
Printed in Great Britain 01987 Pergamon Journals Ltd. 

AN ITERATIVE METHOD OF SOLVING THE PROBLEM 
OF INTERACTION BETWEEN ELASTIC BODIES* 

A.I. ALEKSANDROV, V.G. BOBORYKIN and YU.A. MEL'NIKOV 

A finite-dimensional analogue of the static three-dimensional contact 

problem for two elastic bodies is studied. The interacting bodies are 
approximated by half-spaces, taking Coulomb friction into account. It is 
assumed that the normal ealstic displacements are independent of the 

tangential stresses and that the boundary separating the slippage zone6 

from the adhesion zones within the area of contact is reduced to a system 
of non-linear equations. An iterative process is proposed for solving 

this system. The convergence of the iterative sequence to a unique limit 

point independent of the initial approximation, is shown. 

Let us consider the static, three-dimensional problem of contact between two elastic 

bodies, taking Coulomb friction into account, with partial slippage and adhesion taking place 
within the area of contact /l/. We shall approximate the bodies in contact by half-spaces. 

In a number of important practical cases a decomposition of the initial problem is possible 

such that the area of contact and the normal stresses can be found independently of the 

determination of tangential stresses and relative displacements /2, 3/. The classical formula- 
tion of the second of these problems /l/ will be given as follows. Assuming that the function 
y&q) of normal stresses is known, it is required to find, within the area of contact, a 

vector function of tangential stresses x&n) and a vector function of the relative displacements 

V&q) satisfying the conditions 

IXldPlYl, v#o-.~=--PlYlIvI-‘~ 
Here V=B(x)+F,B(x) is a linear integral operator with a weak singularity /2, 3/, F= 

F&(1) is the rigid, tangential relative displacement ofthebodies and p is the coefficient 

of friction. We shall callthe following system of relations the finite-dimensional problem 

of determining the tangential stresses and relative displacements (problem A) : 

Here 

I =i I < P I Yi I, I Vi I = 0, i E 11 C 10 (0 
I Vi I > 0, Xi = -I I IJi ) I Vi I-'Viy i E I* CI, (2) 

xi = (z*i_1, z.&), vi = (Vzi+ VzJ; II u I2 = IO = (1, . . . 3 NIT I1 r-l 12 = 62; 

Vb = ‘2 bki”j + F,, k=1,...,2N 
j=l 

and the matrix fi bkjl is syrmnetrical and positive definite /2, 3/. 

In accordance with the meaning of the problem, yi<O is the normal stress at the i-th 

point on the surface of one of the bodies in contact,xi, Vi,Fi = (F+,,F,i) are the vectors of tan- 

gentialstress, the relative displacementofthesurfacesofthe.bodiesunderload, and oftherigid 

relative displacement of the i-th point respectively, i]bkjfl is the matrix of the coefficients 
of the effect of the j-th component of the tangential stress vector at the ((j+ I)/21 -th point 
on the k-th component of elastic tangential displacement vector at the point with number 

I(k + 1)/2] , where <[.I denotes the integral part of the number. The sets I, and I, consist 

of the indices of the points situated within the adhesion and slippage zones respectively, and 

must be determined when solving system (l), (2). 
We shall assume that the problem of determining the normal stresses and the area of 

contact has been solved, i.e. that the numbers yi(i= 1, . . ..N) are known. The formulation of 

this problem (we shall call it problem B) and one of the methods for solving it were given 

in /4/. 
Let us turn our attention to problem A. Dividing the second relation of (1) and the first 

relation of (2) by pi = UMIL (bzi_1,2i_1, bzi,,J + I b,i_l,zi 1 > 0, we obtain the system 

1% I6 zip IAi l = 0, i E I, C Ia (3) 
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(4) 1 Ai I > 0, xi = - zi 1 A~ I--L Ai, i E Ia c I, 

zi = P I Y< I, Ai = k&r A& A, = ‘i 
j=l 

'kj2j+fk 

nZi-l, j = ‘,*_l, jfS<S %i, j = b2i, jiBi* f&,,j = F+,,j/Sj 
fai,j = Fzi,&, i = 1, . . ., N; k, j = 1, . . ., 2~ 

Let Us Consider a system of non-linear equations for the unknown vectors xi (E= l,...,N) 

Xi = (xi - Ai) qi (5) 

', 
‘Xi = Q (1 xi - A3 I, zi) = 

lX~-A*lgZi 

ziIxi-Ail-l, [xi--Ad,f>x; 

Theorem 1. The system of Eqs.(5) is equivalent, forthevectors xi@= 1, . . ..N). to the 
system of relations (31, (4). 

Proof. Let Xi (i = 1, . ., N) satisfy system (5). For the values of i for which Ix~i-Ai/< 
zi, we have qi=l. Therefore ~AiI=O,~x~~<;z~, i.e. relations (3) hold. For the values of i 
for which [~+-AiI>zi, we have K+= (xi-Ai)af Ixi- Ail-'. This yields fx~/=zi, and the first 
relation of (4) holds. If in addition a;= 0, then 1x+(= 0 and the second relation of (4) 
holds. If on the other hand Zi>O, then Ai= -aixi, where czi = 1 Xi - Ai 1 (z$%- t >0 and again 
the second relation of (4) holds. We will show in the same manner that if Xi (i = 1, f * ., N) 
satisfies the relations (3), (4), then system (5) is also satisfied. 

Let us carry out the following iterative process of solving system (5). Suppose, in the 
n-th approximation, 

1%" [<am, m= 1 11 . ..I N (6) 

We compute the components of the vector Ain and the quantity pi? 

Z=R+%--rN,r- is an integer such that i<i<~ (9) 

We assume that 
xn+l =x m ,"+ 6," (10) 

where the vectors a,,," = (&&, s&,) are defined as follows: 

6,"= 0 when m+i (ff) 

6,"= -~~"_t(x,~-A,")p n m when m=i 

(the value of the index i is connected with the relation (9) by the number of the approximation 
n). 

We shall show that Ix"+l m I<+,. For m# i this is obvious. Let m = i. If 1 xi" - Ap 1 g Zir 

then x?'+l = xin - At", 

and heke Ix~"[=z~. 
therefore I x1” ) Q ai. If 1 xp - Ain 1 > Q, then xf'l = (xin - Ain)zi 1 xi” _ din I--1, 
This implies that in order for inequality (6) to hold, it is only 

necessary to assume, in the seroth approximation, that [xm*l <am, m= i, . . . . N. 

Theorem 2. A unique solution of system (5) exists, which can be obtained as a limit of 
the sequence constructed according to the rule given by (7)-(11). 

Proof. Let us consider the functional 

where X = (X,, . . . . X,,) is a solution of the system of equations 
2N 
z 'ks4. $ 'k =O, k= 1,. . . (2N (12) 
j=l 

Since the matrix I)bkjII is positive definite, I(J+..., qN)>O and a solution of system 
(12) exists and is unique. 

The functional introduced is the same as that discussed in /4/, Carrying out trans- 
formations similar to those in /4/, we obtain 

1(x"*')- Ifa")= 2&(8;i_1A;i_, +?${A,",) •!- ('3) 
bzi-r,z+-l(~%-1)'+2bz{-1,zldz"i-16& f bzi,z< (k)' 

It can be shown that 
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Pi” = (a,“,_l)” + (a$)’ + a$_lAz_l -t az<Ali 6 0 
Indeed, 

pi* = 1 x** - Ai= I2 4” - 1) gin - I xi* 1 1 xin - A,” 1 cos cpix(q~*-- t) (W 

‘pin is the angle between the vectors xi" and (xi"- A{%)). 

If Ixg”- Ai”l<Zi, then pi"= i and we have pin= 0. Let 1 Xi" - Ain 1 > *is. Remembering that 
at every iteration step Ixahl<zi, we shall write 

and this shows 
prove. 

Returning 

1 xin / DOS ‘pin 
jx;-Ainf d 

‘i 

fxi”-Ahi”i =‘: 

that the right-hand side of Eq.(14) is non-positive, which it was required to 

to relation (131, we write the estimate 

I (Xn+r) - 1 (rn) < - c I&n 1% 
C=min &>O, 6”=(0 ,..., U&_l,~~i ,..., 0) 

l<i<N 

Since i3n = xntl- xn, therefore Z(xnil)< i(9)- C 1 @+I - x” 1%. It can be shown that the 
following relation holds for any integral value of t>O: 

O<IX"+* - xn 1% < rc-l[l(x*)- 2(x"+')] 
therefore a limit x~\~_~=x==(z~, . . . . ztN) exists, which will represent the solution of system 
(5) . 

The solution is unique. Indeed, let two solutions exist xi*=: (~~'_r,~~+), xi** = (zz_t;-,,.$), i = 
i ,. .., N. Consider the relation 

rN ZN 

Here 

I) 

The following combinations of the quantities gi*= q(Ri*,si),qi**r; q(Ri**,zi) are possible at 
various values of the index i calculated from the second relation of (5): 

qi*ai, go=%; q,*=i, qr=zJRy 

qi* = xiJRi*, qT* = 1; qi* = zi/Ri*, pi** = zifRi** 

(Ri* e I xi* - Ai** 1, Rt” _i 1 xr- At* I) 

It can be shown that Si<O for any of these combinations. But then we also have S<O, 
which is possible when the matrix Ubkjjj is positive definite, only when xi* = xi**+ f= 1,...,N, 
which proves Theorem 2. 

The iterative process proposed here, just like the process discussed in /4/, is an 
analogue ofthe Gauss relaxation method ofsolving systems of linear algebraic equations /5/. 
The algorithm (7)-(11) ensures the convergence of the iterative sequence x" (n = 0, 1, . ..) 
irrespective of the choice of the initial approximation , since after the first cycle of N 
iterations conditions (6) hold. 

AS an example, we have solvedtheproblem of contact between two cylinders with mutually 
orthogonal generatrices, made of the same material and loaded by normal and shearing forces, 
The rectangular region including the area of contact was covered by a 20 x 20 mesh, and the 
stresses sought were calculated at the centre of each elementary cell. To solve problem B, 
we used the process described in /4/: problem A was solved using algorithm (7)-(11). The 
following inequality was satisfied after 25 cycles: 

, x(“+~)N _ pN,, , x@+l)N 1~ jo-a 
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NEUTRAL LOADING IN THE ENDOCHR~IC MODEL OF THE THEORY OF P~STICITY* 

The properties of a simple model of the endochronic theory of plasticity 

A.B. MOSOLOV 

(ETP) for inactive deformation processes are studied. The theory uses 
"internal time" as the parameter of the deformation process, andno 
distinction is made between the loading and unloading which is essentially 
non-linear /l-4/. 

A loading and deformation processes are described in a five-dimensional stress deviator 
space E& f5/. Restricting ourselves to processes not depending explicitly on time, we can 
write the defining equations of ETP for an initially isotropic material in the form 

&= de,-+ de,,&,= E-l&,de,=al,&= F(o,e,e', QdE, (if 
dE = 1 de - wl~I,Os;x~* 

Here e, e,, e, are the total, plastic and elastic deformation vectors, respectively, (I is 
the stress vector, z is the "internal time" parameter, E is the modulus of elasticity, F is 
the 0 (5)-invariant hardending function, /4/, & is the modified measure of the deformation, 
and x is a parameter characterizing the contribution of the elastic component of the defonna- 
tion towards the variation in intrinsic time; for any =,a'= da/& where &=)deIisthe lengthof 
the arcofthedeformationtrajectory. Weassumethatthemagnitudeofthe volumetric deformation 8 
does not affect the plasticity. 

System (1) yields the following equation: 
da = Ede- EFadc (3) 

In the simplest case 7 can be regarded as a constant of the material, in which case Eq. 
(2) will take the form (a@ = i/F is the yield point) 

da=Ede-aaIde-@%ia[, a=Efa, (3) 

The above equation describes a material without hardening. For a material with linear 
isotropic hardening we must make the substitution a,,-aoo(ifk@ /l/ (in the case of trans- 
lational hardening a- a-pe,g is the hardening modulus). 

The ETP has no concept of a yield surface and there is no unloading condition; therefore 
E@.(2), (3) are assumed to hold for both the loading (active processes ade>O) and unloading 
(passive processes ode<0 /6/). 

Let us write the condition of inactivity of the process: ada<0 (the equality corresponds 
to neutral loading). Substituting de into it from (Z), we can rewrite this condition in the 
form 

a,,'+ EFa& d 0, a, = 10 1 (4) 
Let y be the angle between s and do,cr=Ia'1. Then 

a,' = 0 easy (5) 
Let us transform the expression for E'. To do this, we substitute de from (2) into the 

expression for E' (1) and square the resulting expression. After cancelling like terms, we 
obtain a quadratic equation for E', whose root is 

(the second root is rejected as extraneous). Substituting (6) into (4) we write, after 
reduction, the condition of inactivity of the process when an extra load da is added to the 
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